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Ab s t ract

A method is presented for obtaining minimum discrimination

information (M. D. I . )  estimates of probability distributions. This

involves using an extremal principle of Charnes and Coope r f4 J and ,

viewing M. D. I. estimation in a dual convex programming framework.

The resulting dual convex program is unconstrained and involves only

exponential and linear terms, and hence is easily solved. This approac h

makes M. D. I. estimation computationally efficient and reduces the

time and cost of obtaining such estimates.

Key words and phrases: minimum discrimination information estimation,
information theory , convex programming, unconstrained dual
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1 Introduction and Summary

Wiene r (1948 p. 76) remarked quite early that entropy (or

Shannon-Wiener type measures of the amount of information) could

eventually replace Fisher ’s defi nition [9] of information (see Kuliback

t i l l ) .  Still , information theory is often mistakenly considered pri-

marily as a subfield of communication theory, where indeed Shannon’s

entropy has proved essential 1141. The statistical community has only

fairly recently (after the 1967 translation of Kuilback’s 1959 monograph

into Russian) been assessing the use of information theoretic concepts

in inference, although there were notable early recognitions of the statis-

tical power of the theory (e.g. 112], [13], 16], see also the refe rences

in f i l l ) .  The information functional we consider will be called the

Khinchin-Kullback-Leib ler functional in honor of their early contribu-

ti on to this theory. Modern contributions of Aka ike elucidate some of

thi s power , and show that the information theoretic framework is per-

haps the proper approach to many diverse problems of statistics. In

U] he gives an information theoretic extension of the maximum like -

lihood principle and shows that the Khinchin-Kullback-Leibler type

information functiona l naturally arises in statistical problems. By

utilizing the maximum relative entropy (or equivalently the minimum

expected log likelihood ratio) quantity he is able to encompass both

statistical estimation and hypothesis testing into a decision theoretic
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fr amework using a Khinchin-Kullback-Leible r type loss function. His

techniques are applied to such important considerations as the decision

of the numbe r of factors to include in factor analysis , the number of

independent variates to choose in multip le regression, and the order

of the model when fitting an autoregressive time series. In [2] Akaike

shows that using his extension of the maximum likelihood method

enables one to obtain a solution to the problem of James-Stein estima-

tors. In j 3] he looks at Bayes procedures from an information theoretic

point of view.

The information theoretic approac h is based upon the mean

information for discriminating between two densities f 1 and f2 (relative

to some fixed dominating measure X) . The mean information for dis-

criminat ing in favor of f 1 against f2 is defined by Kulibac k [111 as

I (f 1 : f2 ) = ~~f i (x) ~ C ~~ 
~(d x) . He also calls this the directed

divergence between the two probability measures and shows t ( f 1:f2 ) � 0

with equality if and only if f 1 f2 a. e. [X ] . Thus one may estimate

f2 by that density f 1 which is closest in the sense of information distanc e

to and one may Impose additional constraints upon f 1 when necessary .

This method of estimation is called minimum discrimination information

(M. D. I.) and is based upon the following inequality :

M. D. I. inequality: Suppose T (x) is a statistic for which

M2(r )  = 
,~ e TT(x) f 2 

(x) A (dx) exists in an interval, and consider those 
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densities f1 satisfying 9 = ~ T( x) f 1(x) X (dx) for a known parameter 9

Then I (f 1:f2) � 9 - OJn M~~T) where 9 = —
~~

-
~~ Gn M

2 
( r) with equality iff

• f 1(x) 4 (x) = e T T(x) f2 (x) / M2 (T) a.e. [A ]

The density 4 (x) is called the M.D . I. estimate of f 2 subj ect to

f’~’~X~ f 1(x) d A(x) (or the “conjugate ” di stribution in Khinchin ’s

terminology) .

Since solving for the M. D. I. estimate 4 entails solving the equa-

tion 
d 

an M 2 (T) = 9 for T (a highly non linear problem) it has been

quite diffic ult computationaUy to obtain M .D. I. estimates. This implicit

differential equation relation is also diffic ult to work with analytically.

The purpose of this paper is to show how to view M.D. I. estimation

fr om a dual convex programming point of view and to point out analytical

pr operties of the estimates which follow directly from the form of this

1 I duality. In particular , the dual problem is unconstrained and involves

only exponential and linear terms. This pair of dual problems is easily

solved by any of a number of existing algorithms. The T variables

needed for 4 and called “dual parameters ” in Gokhale and Kulibac k

( 1978) are here shown to be actual variables in the dual convex pro-

gramming problem.

This dual formulation was first developed by Charne s and Cooper

[41, r sj  (see also ( 7 ) )  who applied the technique to show that the account-

ing balance equations for a cartel or “resource-value transfer ” economy

-~~~~~~~ ~~~~~~~~~~~~~~~~~~~ 
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could be derived from Khinchin-Kullback-Leible r statistical estimates

constrained by a linear inequality system. Other new developments show-

ing that old heuristic estimating procedures are actually constrained

Khinchin-Kullback-Leibler estimations, such as (Charnes , Raike , Bett-

inger r81) “gravity potential ” estimates, SANDDA BS estimates in market-

hg analysis (Charnes , Cooper , Learner [6]) , and various depreciation

methods in accounting (Theil and Lev [151) lend great weight to the idea

that efficient analytical and compu tational techniques for M.D. I. estima-

tion can be valuable in applied research .
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~ 2 U nconstrained Dual Programming Approach to Estimation

An important application of M .D. I. es timation is to the analysis of

contingency tables, and we shall utilize this example to elucidate the

techniques of this section. Denote a contingency table cell by the generic

lable w and the collection of all cells by 0. For a suitable choice of

probability measure rr (~ ) over the cont ingency table w e 0 (in general

rr (w) is determined by the specific proble m of inte rest). Gokhale and

Kuilback [101 pose the problem of finding that probability measure p*

(the M.D .I. estimate) which minimizes I (p: i~ ) subject to the equality

constraints 
~~~ 

= 
~~ . and the non-negativity constraints E �O . Here ~

(called the design matrix ) is an (r + 1) x matrix , 2 is the 1 x

vector of probabilities and e is a 1 x (r + 1) vector. If we denote the

rows of ~ by C
~

(w), i = 0,. . ., r , the constraints are of the form

~~~

‘ C~ (w) p (w) = e~ , I = 0, .  . ., r . U sually we take 1 and

for all w c 0 so that the first constraint insures that ~ is a probability

measure. The remaining r equations are (usually ) moment constraints. Gok-

hale and Kuliback additionally require that the vectors C~( )  are linearly

independent in order to obtain their estimates. As we shall see, the pro-

gramming formulation does not require this assumption. This is

important since, even aside from having to recognize linearly indepen-

dent constraints, the transformation to obtain such linearly independent

constraints can be difficult and onerous .

-5-
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By using Lagrange multipliers Gokhale and Kuliback show that the

minimizing probability distribution is

(2 . 1) p*(w) = exp ~r0 + ¶
1C 1(w) + . . • + 

~~~~~~~~ 
ir(w)

where , they say , the ‘T ’s are to be determine d in such a way that cE* ,Q, holds.

The proble m of determining (‘T 0, . • , Tr) so as to satisfy Cp* = ~ is in general ,

quite diffic ult. The following Charnes-Coope r extremal principle , however ,

makes this very easy computationally.

Let K (6 , x) = de~C 
- 6 x for 6 ~ 0, d >0 , x £ 17<, and define

g (6) inf K (6 , x) 6 - 6 2r f~±-~ — 6 2n (_.L) . Then it follows that
x d ed

for ,~~ 
(6~ . . •,  6~ )’, and ~ = (x 1, . . ., x1~)’

(2.2 )  v (~,) E 
~~ g(6 .) = -

‘

~~

‘ 6~ 2n ~~~~~~~
- 

~~ ~~~~ [d1e~
Ci - 61 x. J .

Suppose that ~ = A z for some matrix ~~~~~. And let 
~A denote the i th row of

A , and set A’ 
~ = b. Then (2 . 2) becomes

(2.3 )  v(~,) - 

~ an 
(e~~ ) 

� E~ d1 ~~~~~ - (6 k ) i~ ~~. I

.A z
• 1  Z d . e~ ~ - b  z ~ ( z )

1 — as —.

which holds for all z and 6 c ~. 6 : A 6  b , 6 ~

We then have :

Theorem 2. 1 (Charnes - Cooper [4], [5]) For the following dual convex

programs

(I) sup ~ -E 6 . 9~~(
Ô
i)  subj ect to

and

_ _ _ _ _ _ _ _ _ _ _
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(II) inf ~ (z) ~ Ed 1 e
t~~ -b’z

I 
as

there are exactly three mutuall y exclusive and collectively exhaustive duality

states:

(1) A ~ t b :  ~‘6 b, 6 � 0 3 = ~ and ~ (z) is unbounded below.

(2) 11 6~ 0 for all ~ A ~ and ~ (~) has only an infimum.

Further m l  ~ 
(z) = mm (z) where 

~D
(z) contains only those

terms of g(z) for which 6~ > 0 in some 6 c

(3) There exist s 6 € A with 6 > 0 and ~(z) has a minimum at z4 .

*Further: (a) v(8) has a unique maximum at ~ > 0

* *(b) v(6 ) = ~ (z )

(c) 6~ = d1e~~~
’

Note that there is no requirement of linear independence made , and

all possible behaviors of the system A are comprehended. Of course, the

usual state in applications will be (3). If the requisites for state determina-

tion are not obvious , the state may be dete r mined by solution of the linear

programming problem: max ~

sub3ect to - 6 � 0

A’6 b

State (1) corresponds to Infeasibility state (2) correspond s to = 0 and

state (3) corresponds to > 0 .  (c. f. [7 1)

- . —________  ---~~~~-- —- -- 
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This result is very attractive since the dual proble m (II) is an

unconstrained convex programming problem involving only exponential

and linear terms and hence is easily solved numerically. The original

constrained Khinchin-Kullback-Leibler estimation problem (I) was very

difficult to solve . It should also be noted that case 3 of Theorem 2. 1 could equally

well have been proven in the general measure-theoretic case in almost

t1~ same manner as the finite discrete case (7 1. 1171.

Referring back to (2. 1) and the dete rmination of ( T O, . . • ,

we note that taking 8~ = p(w), w cQ 
, d = e~~ n (w) , A’ = C and b = e

in Theore m 2. 1 yields the Gokhale -Kullback M.D .I. problem mentioned

at the beginning of this section. The dual problem is the unconstrained

-1 C~~Z
(2.4 )  mm L i e  u(w) e”~ 

as - e ~

where C~~ is the w th co1umn of the (r + 1) x Q m a t r i x C .  If

this minimum occurs at say, then theorem 2. 1 implies that

z is to be identified as T* in p(w) = e -1 ii(w) e~ 
(U =

exp + ‘r~ C1(w) + . . . + ¶*C (W) ) Tr (w ) .

Thus the ~‘s arise in (2. 1) and are easily computed from the unconstrained

convex programming problem (2. 4) . Thus the computation of constrained

M. D. I. estimates becomes a rather straightforward problem.

Further , item (c) in state 3 shows immediately that whatever the

form of the d. - distribution , the M . D. I. estimated distribution is of the

exponential family. As may be noted from the results for general 

—.- — —-.—— - — — - -.‘. ....~~~~
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~ ~~~~~~~~~~~~~~~~~~ 
.

L.. ~~~~ ~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~ -~~ ~~~~~~~ -—~
---- —

~~-- - ——- -
~~~~~~~~ 

—
~~
-

~ 
-

~~~~~



‘ P r ~—~~~~~~ ”~’~” ~~~~~~~~~~~~~~~~~~~
— . .~~— ———--..,, -..~—.——- ._,_.st,,.._. 

~~_ ._—_~-
_,

~~a~
.- ~~~~~~~~

-9-

distributions in [7), a similar property persists there as well. Thus the

M. D. 1. estimated distributio’ .3 have the attractive property of preserv ing

sufficient statistics associated with the target distribution since its density

is multiplied by an exponential linear in z~
’ to get the M .D. I .  estimate.

Also, Gokhale and Kuliback [10] noted, when fitt ing rnarg inals for

contingency tables by M. I). I. estimation one obtains the log-linear model

for contingency table entries as a by-product. Here this is immediately

evident (without further qualifications or Gokhale and Kuliback’s additional

requirements) by taking logs in item (c) of state 3.

As alluded to in section one, this dual approach to constrained

Khinchin-Kullback-Leibler estimation has already proven valuable in

practice. In marketing research, Charnes, Cooper and Learner [61 subs tan-

t ially extended the SANDDABS analysis used to evaluate consumer purchase

behavior and brand shifting. They showed that the calculations involved

in the analysis could be viewed as constrained Khinchin-Kullback-Leibler

estimation, and thereby brought the procedure under the ambit of sta-

tistical theory rather than leaving it as me rely a heuris tic est imation

method. By utilizing the dual approach outlined in Theorem 2. 1 they

were able to improve the computational efficiency of the analysis as well.

— T~-‘—S ~~~~~~~~~~~~~~ -~ 
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